metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.158D10, C10.322- 1+4, C10.1362+ 1+4, C4⋊D20⋊35C2, C4⋊C4.115D10, C42.C2⋊14D5, D10⋊Q8⋊38C2, C4.D20⋊32C2, (C4×C20).225C22, (C2×C20).191C23, (C2×C10).244C24, D10.13D4⋊37C2, C2.61(D4⋊8D10), (C2×D20).173C22, C22.265(C23×D5), D10⋊C4.74C22, C5⋊5(C22.56C24), (C2×Dic10).44C22, (C2×Dic5).126C23, C10.D4.55C22, (C22×D5).109C23, C2.33(Q8.10D10), (C5×C42.C2)⋊17C2, (C2×C4×D5).143C22, (C5×C4⋊C4).199C22, (C2×C4).208(C22×D5), SmallGroup(320,1372)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.158D10
G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >
Subgroups: 950 in 220 conjugacy classes, 91 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, Dic10, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C22.56C24, C10.D4, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C4.D20, D10.13D4, C4⋊D20, D10⋊Q8, C5×C42.C2, C42.158D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, 2- 1+4, C22×D5, C22.56C24, C23×D5, Q8.10D10, D4⋊8D10, C42.158D10
(1 68 11 78)(2 157 12 147)(3 70 13 80)(4 159 14 149)(5 72 15 62)(6 141 16 151)(7 74 17 64)(8 143 18 153)(9 76 19 66)(10 145 20 155)(21 46 31 56)(22 112 32 102)(23 48 33 58)(24 114 34 104)(25 50 35 60)(26 116 36 106)(27 52 37 42)(28 118 38 108)(29 54 39 44)(30 120 40 110)(41 82 51 92)(43 84 53 94)(45 86 55 96)(47 88 57 98)(49 90 59 100)(61 126 71 136)(63 128 73 138)(65 130 75 140)(67 132 77 122)(69 134 79 124)(81 115 91 105)(83 117 93 107)(85 119 95 109)(87 101 97 111)(89 103 99 113)(121 154 131 144)(123 156 133 146)(125 158 135 148)(127 160 137 150)(129 142 139 152)
(1 108 133 53)(2 54 134 109)(3 110 135 55)(4 56 136 111)(5 112 137 57)(6 58 138 113)(7 114 139 59)(8 60 140 115)(9 116 121 41)(10 42 122 117)(11 118 123 43)(12 44 124 119)(13 120 125 45)(14 46 126 101)(15 102 127 47)(16 48 128 103)(17 104 129 49)(18 50 130 105)(19 106 131 51)(20 52 132 107)(21 61 87 159)(22 160 88 62)(23 63 89 141)(24 142 90 64)(25 65 91 143)(26 144 92 66)(27 67 93 145)(28 146 94 68)(29 69 95 147)(30 148 96 70)(31 71 97 149)(32 150 98 72)(33 73 99 151)(34 152 100 74)(35 75 81 153)(36 154 82 76)(37 77 83 155)(38 156 84 78)(39 79 85 157)(40 158 86 80)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 57 11 47)(2 46 12 56)(3 55 13 45)(4 44 14 54)(5 53 15 43)(6 42 16 52)(7 51 17 41)(8 60 18 50)(9 49 19 59)(10 58 20 48)(21 147 31 157)(22 156 32 146)(23 145 33 155)(24 154 34 144)(25 143 35 153)(26 152 36 142)(27 141 37 151)(28 150 38 160)(29 159 39 149)(30 148 40 158)(61 85 71 95)(62 94 72 84)(63 83 73 93)(64 92 74 82)(65 81 75 91)(66 90 76 100)(67 99 77 89)(68 88 78 98)(69 97 79 87)(70 86 80 96)(101 124 111 134)(102 133 112 123)(103 122 113 132)(104 131 114 121)(105 140 115 130)(106 129 116 139)(107 138 117 128)(108 127 118 137)(109 136 119 126)(110 125 120 135)
G:=sub<Sym(160)| (1,68,11,78)(2,157,12,147)(3,70,13,80)(4,159,14,149)(5,72,15,62)(6,141,16,151)(7,74,17,64)(8,143,18,153)(9,76,19,66)(10,145,20,155)(21,46,31,56)(22,112,32,102)(23,48,33,58)(24,114,34,104)(25,50,35,60)(26,116,36,106)(27,52,37,42)(28,118,38,108)(29,54,39,44)(30,120,40,110)(41,82,51,92)(43,84,53,94)(45,86,55,96)(47,88,57,98)(49,90,59,100)(61,126,71,136)(63,128,73,138)(65,130,75,140)(67,132,77,122)(69,134,79,124)(81,115,91,105)(83,117,93,107)(85,119,95,109)(87,101,97,111)(89,103,99,113)(121,154,131,144)(123,156,133,146)(125,158,135,148)(127,160,137,150)(129,142,139,152), (1,108,133,53)(2,54,134,109)(3,110,135,55)(4,56,136,111)(5,112,137,57)(6,58,138,113)(7,114,139,59)(8,60,140,115)(9,116,121,41)(10,42,122,117)(11,118,123,43)(12,44,124,119)(13,120,125,45)(14,46,126,101)(15,102,127,47)(16,48,128,103)(17,104,129,49)(18,50,130,105)(19,106,131,51)(20,52,132,107)(21,61,87,159)(22,160,88,62)(23,63,89,141)(24,142,90,64)(25,65,91,143)(26,144,92,66)(27,67,93,145)(28,146,94,68)(29,69,95,147)(30,148,96,70)(31,71,97,149)(32,150,98,72)(33,73,99,151)(34,152,100,74)(35,75,81,153)(36,154,82,76)(37,77,83,155)(38,156,84,78)(39,79,85,157)(40,158,86,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,57,11,47)(2,46,12,56)(3,55,13,45)(4,44,14,54)(5,53,15,43)(6,42,16,52)(7,51,17,41)(8,60,18,50)(9,49,19,59)(10,58,20,48)(21,147,31,157)(22,156,32,146)(23,145,33,155)(24,154,34,144)(25,143,35,153)(26,152,36,142)(27,141,37,151)(28,150,38,160)(29,159,39,149)(30,148,40,158)(61,85,71,95)(62,94,72,84)(63,83,73,93)(64,92,74,82)(65,81,75,91)(66,90,76,100)(67,99,77,89)(68,88,78,98)(69,97,79,87)(70,86,80,96)(101,124,111,134)(102,133,112,123)(103,122,113,132)(104,131,114,121)(105,140,115,130)(106,129,116,139)(107,138,117,128)(108,127,118,137)(109,136,119,126)(110,125,120,135)>;
G:=Group( (1,68,11,78)(2,157,12,147)(3,70,13,80)(4,159,14,149)(5,72,15,62)(6,141,16,151)(7,74,17,64)(8,143,18,153)(9,76,19,66)(10,145,20,155)(21,46,31,56)(22,112,32,102)(23,48,33,58)(24,114,34,104)(25,50,35,60)(26,116,36,106)(27,52,37,42)(28,118,38,108)(29,54,39,44)(30,120,40,110)(41,82,51,92)(43,84,53,94)(45,86,55,96)(47,88,57,98)(49,90,59,100)(61,126,71,136)(63,128,73,138)(65,130,75,140)(67,132,77,122)(69,134,79,124)(81,115,91,105)(83,117,93,107)(85,119,95,109)(87,101,97,111)(89,103,99,113)(121,154,131,144)(123,156,133,146)(125,158,135,148)(127,160,137,150)(129,142,139,152), (1,108,133,53)(2,54,134,109)(3,110,135,55)(4,56,136,111)(5,112,137,57)(6,58,138,113)(7,114,139,59)(8,60,140,115)(9,116,121,41)(10,42,122,117)(11,118,123,43)(12,44,124,119)(13,120,125,45)(14,46,126,101)(15,102,127,47)(16,48,128,103)(17,104,129,49)(18,50,130,105)(19,106,131,51)(20,52,132,107)(21,61,87,159)(22,160,88,62)(23,63,89,141)(24,142,90,64)(25,65,91,143)(26,144,92,66)(27,67,93,145)(28,146,94,68)(29,69,95,147)(30,148,96,70)(31,71,97,149)(32,150,98,72)(33,73,99,151)(34,152,100,74)(35,75,81,153)(36,154,82,76)(37,77,83,155)(38,156,84,78)(39,79,85,157)(40,158,86,80), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,57,11,47)(2,46,12,56)(3,55,13,45)(4,44,14,54)(5,53,15,43)(6,42,16,52)(7,51,17,41)(8,60,18,50)(9,49,19,59)(10,58,20,48)(21,147,31,157)(22,156,32,146)(23,145,33,155)(24,154,34,144)(25,143,35,153)(26,152,36,142)(27,141,37,151)(28,150,38,160)(29,159,39,149)(30,148,40,158)(61,85,71,95)(62,94,72,84)(63,83,73,93)(64,92,74,82)(65,81,75,91)(66,90,76,100)(67,99,77,89)(68,88,78,98)(69,97,79,87)(70,86,80,96)(101,124,111,134)(102,133,112,123)(103,122,113,132)(104,131,114,121)(105,140,115,130)(106,129,116,139)(107,138,117,128)(108,127,118,137)(109,136,119,126)(110,125,120,135) );
G=PermutationGroup([[(1,68,11,78),(2,157,12,147),(3,70,13,80),(4,159,14,149),(5,72,15,62),(6,141,16,151),(7,74,17,64),(8,143,18,153),(9,76,19,66),(10,145,20,155),(21,46,31,56),(22,112,32,102),(23,48,33,58),(24,114,34,104),(25,50,35,60),(26,116,36,106),(27,52,37,42),(28,118,38,108),(29,54,39,44),(30,120,40,110),(41,82,51,92),(43,84,53,94),(45,86,55,96),(47,88,57,98),(49,90,59,100),(61,126,71,136),(63,128,73,138),(65,130,75,140),(67,132,77,122),(69,134,79,124),(81,115,91,105),(83,117,93,107),(85,119,95,109),(87,101,97,111),(89,103,99,113),(121,154,131,144),(123,156,133,146),(125,158,135,148),(127,160,137,150),(129,142,139,152)], [(1,108,133,53),(2,54,134,109),(3,110,135,55),(4,56,136,111),(5,112,137,57),(6,58,138,113),(7,114,139,59),(8,60,140,115),(9,116,121,41),(10,42,122,117),(11,118,123,43),(12,44,124,119),(13,120,125,45),(14,46,126,101),(15,102,127,47),(16,48,128,103),(17,104,129,49),(18,50,130,105),(19,106,131,51),(20,52,132,107),(21,61,87,159),(22,160,88,62),(23,63,89,141),(24,142,90,64),(25,65,91,143),(26,144,92,66),(27,67,93,145),(28,146,94,68),(29,69,95,147),(30,148,96,70),(31,71,97,149),(32,150,98,72),(33,73,99,151),(34,152,100,74),(35,75,81,153),(36,154,82,76),(37,77,83,155),(38,156,84,78),(39,79,85,157),(40,158,86,80)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,57,11,47),(2,46,12,56),(3,55,13,45),(4,44,14,54),(5,53,15,43),(6,42,16,52),(7,51,17,41),(8,60,18,50),(9,49,19,59),(10,58,20,48),(21,147,31,157),(22,156,32,146),(23,145,33,155),(24,154,34,144),(25,143,35,153),(26,152,36,142),(27,141,37,151),(28,150,38,160),(29,159,39,149),(30,148,40,158),(61,85,71,95),(62,94,72,84),(63,83,73,93),(64,92,74,82),(65,81,75,91),(66,90,76,100),(67,99,77,89),(68,88,78,98),(69,97,79,87),(70,86,80,96),(101,124,111,134),(102,133,112,123),(103,122,113,132),(104,131,114,121),(105,140,115,130),(106,129,116,139),(107,138,117,128),(108,127,118,137),(109,136,119,126),(110,125,120,135)]])
47 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4G | 4H | 4I | 4J | 4K | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L | 20M | ··· | 20T |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
| size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 20 | 4 | ··· | 4 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
47 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | - | + | |
| image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | 2+ 1+4 | 2- 1+4 | Q8.10D10 | D4⋊8D10 |
| kernel | C42.158D10 | C4.D20 | D10.13D4 | C4⋊D20 | D10⋊Q8 | C5×C42.C2 | C42.C2 | C42 | C4⋊C4 | C10 | C10 | C2 | C2 |
| # reps | 1 | 2 | 4 | 4 | 4 | 1 | 2 | 2 | 12 | 2 | 1 | 4 | 8 |
Matrix representation of C42.158D10 ►in GL8(𝔽41)
| 11 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
| 32 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 11 | 9 | 0 | 0 | 0 | 0 |
| 0 | 0 | 32 | 30 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 39 | 13 | 20 | 26 |
| 0 | 0 | 0 | 0 | 28 | 2 | 21 | 5 |
| 0 | 0 | 0 | 0 | 2 | 6 | 11 | 28 |
| 0 | 0 | 0 | 0 | 8 | 8 | 22 | 30 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 0 | 28 | 13 |
| 0 | 0 | 0 | 0 | 0 | 40 | 28 | 0 |
| 0 | 0 | 0 | 0 | 0 | 38 | 1 | 0 |
| 0 | 0 | 0 | 0 | 3 | 38 | 0 | 1 |
| 20 | 21 | 40 | 1 | 0 | 0 | 0 | 0 |
| 20 | 37 | 40 | 33 | 0 | 0 | 0 | 0 |
| 40 | 1 | 21 | 20 | 0 | 0 | 0 | 0 |
| 40 | 33 | 21 | 4 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 35 | 28 | 34 | 1 |
| 0 | 0 | 0 | 0 | 13 | 31 | 0 | 35 |
| 0 | 0 | 0 | 0 | 25 | 25 | 38 | 13 |
| 0 | 0 | 0 | 0 | 27 | 9 | 19 | 19 |
| 0 | 0 | 34 | 34 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 7 | 0 | 0 | 0 | 0 |
| 7 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |
| 40 | 34 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 13 | 28 |
| 0 | 0 | 0 | 0 | 35 | 40 | 32 | 37 |
| 0 | 0 | 0 | 0 | 0 | 0 | 7 | 35 |
| 0 | 0 | 0 | 0 | 0 | 0 | 8 | 34 |
G:=sub<GL(8,GF(41))| [11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,11,32,0,0,0,0,0,0,9,30,0,0,0,0,0,0,0,0,39,28,2,8,0,0,0,0,13,2,6,8,0,0,0,0,20,21,11,22,0,0,0,0,26,5,28,30],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,3,0,0,0,0,0,40,38,38,0,0,0,0,28,28,1,0,0,0,0,0,13,0,0,1],[20,20,40,40,0,0,0,0,21,37,1,33,0,0,0,0,40,40,21,21,0,0,0,0,1,33,20,4,0,0,0,0,0,0,0,0,35,13,25,27,0,0,0,0,28,31,25,9,0,0,0,0,34,0,38,19,0,0,0,0,1,35,13,19],[0,0,7,40,0,0,0,0,0,0,7,34,0,0,0,0,34,1,0,0,0,0,0,0,34,7,0,0,0,0,0,0,0,0,0,0,1,35,0,0,0,0,0,0,0,40,0,0,0,0,0,0,13,32,7,8,0,0,0,0,28,37,35,34] >;
C42.158D10 in GAP, Magma, Sage, TeX
C_4^2._{158}D_{10} % in TeX
G:=Group("C4^2.158D10"); // GroupNames label
G:=SmallGroup(320,1372);
// by ID
G=gap.SmallGroup(320,1372);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,555,100,675,570,136,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations